1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
| #include <bits/stdc++.h> using namespace std; #define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout) #define fo(i,j,k) for(int i=(j),end_i=(k);i<=end_i;i++) #define ff(i,j,k) for(int i=(j),end_i=(k);i< end_i;i++) #define fd(i,j,k) for(int i=(j),end_i=(k);i>=end_i;i--) #define DEBUG(x) cerr<<#x<<"="<<x<<endl #define all(x) (x).begin(),(x).end() #define cle(x) memset(x,0,sizeof(x)) #define lowbit(x) ((x)&-(x)) #define ll long long #define ull unsigned ll #define db double #define lb long db #define pb push_back #define mp make_pair #define fi first #define se second inline int read() { int x=0; char ch=getchar(); bool f=0; for(;ch<'0'||ch>'9';ch=getchar()) if(ch=='-') f=1; for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+(ch^48); return f?-x:x; } #define CASET fo(___,1,read()) const ll mod=1e9+7; inline ll Add(ll x,ll y){x+=y; return (x<mod)?x:x-mod;} inline ll Dec(ll x,ll y){x-=y; return (x<0)?x+mod:x;} inline ll Mul(ll x,ll y){return x*y%mod;} inline ll Pow(ll x,ll y) { y%=(mod-1);ll ans=1;for(;y;y>>=1,x=x*x%mod)if(y&1) ans=ans*x%mod; return ans; } const int N=1e6+3; ll pw[N]; char s[N]; int n,p[N]; ll ans; inline void Lyndon(char *s,int n) { for(int i=1,j,k;i<=n;) { p[i]=i; for(j=i,k=i+1;k<=n&&s[j]<=s[k];k++) { if(i==j) p[k-1]=i; else p[j-1]+(k-j); j=(s[j]==s[k])?j+1:i; } for(;i<=j;i+=k-j); p[i-1]=i-(k-j); } } int main() { pw[0]=1; fo(i,1,1000000) pw[i]=pw[i-1]*1112%mod; CASET { scanf("%s",s+1); n=strlen(s+1); Lyndon(s,n); ans=0; fo(i,1,n) ans=Add(ans,pw[i-1]*p[i]%mod); printf("%d\n",ans); } return 0; }
|